Code No.: 14247

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (C.S.E./AIML) IV-Semester Main & Backlog Examinations, July-2022 Machine Learning

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question									CO	PO
1.	Write the Task, Performance measure (P) and Training experience (E) for Handwriting recognition problem.								2	1	1,2
2.	Find which hypothesis shown below are consistent with data given as:									1	1,2
	Example Citation Size InLibrary Price Editions Buy										
	1	Some	Small	No	Affordable	One	No				
	2	Many	Big	No	Expensive	Many	Yes				
	H1= (?, ?, N H2= (?, ?, 1		y)	Color of Di	a grantis da		1 2 2				
3.	Find the entropy of the dataset used for the Product Opinion analysis having 150 instances: where 80 are Labelled as positive instances, 70 are Labelled as negative instances							2	2	2	1,2
4.	Design a Neural network for implementing Logical NAND operation							2	3	2	1,2
5.	When you can say that concept class C defined over a set of instances X as PAC-learnable?								1	3	1,2
6.	Probability probability	of Anil be	eing obs	erved sneez	nt 'Anil has ing when he ing when he of g statements.	had viral i	s 0.8 and	2	3	3	1,2
				is seen snee							
7.	Why do we need Locally weighted regression models for classification?							2	1	4	1,2
8.	Find the Euclidian distance between the two data instances having values for the 3 attributes $X1=(5, 8, 6)$ and $X2=(14, 5, 8)$.							2	3	4	1,2
9.	Represent the following If-Then rules by using Genetic Algorithms bit string notation. The list of attributes contributing to the target concept PlayTennis (Yes, No) is shown below.								3	5	1,2
				Rainy}, To	emperature= ak, Strong}	{Hot, Mile	d, Cool},				
	Rule 1: IF (Outlook=	Rainy an	d Wind=Str	ong) THEN I	PlayTennis	:No				
	Rule 2: IF of PLayTennis		= Overc	ast OR Rai	ny) and Hun	nidity=Higl	h) THEN				

Code No.: 14247

10.	size 3	X 3 8	and tak	es the	Stride as	2 with	no pa	volves with filter of adding. After these	2	3	5	1,2
				Part	-B (5×8 =	40 Mai	rks)					
11. a)	Explai	in the de	sign ste	eps of C	heckers le	arning p	orogram	with a diagram.	4	2	1	1,2
b)					using the				4	3	1	1,2
	00	Num	The second name of the second	staurant		Day	Cost	Reaction		5	-	1,2
		1	The	Nines	bkfst	Fri	\$	sick (+)				
		2	Ban		lunch							
						Fri	\$\$	ok (-)				
		3		Nines	lunch	Sat	\$	sick (+)				
		4	Moo	sewood	l bkfst	Sun	\$	ok (-)				
		5	The	Nines	bkfst	Sun	\$\$	ok (-)				
2. a) b)	Multi- Consid	layer fee ler the fo	ed-forwa ollowin	ard netog g datase	work with et. Which	Backpro attribute	opogation will be	k? Explain Learning on algorithm. e selected at the root arning algorithm?		3	2	1,2
	RID a	ge	income	student	credit_rating	Class: buy	s_computer	Theman and H. 7				
	I y	outh	high	по	fair		10		1			
		outh	high	no	excellent	ı	10					
		niddle_aged	high	no	fair	у.	es		2			
		enior	medium	по	fair	у	es					
		enior	low	yes	fair .	у	es					
		nior niddle_aged	low	yes	excellent		ю					
		outh	medium	yes no	excellent fair		es					
		outh	low	yes	fair		es es					
	- 10 miles	enior	medium	yes	fair		es		1			
	11 yc	outh	medium	yes	excellent		es					
. 1	12 m	iddle_aged	medium	no	excellent		es					
		iddle_aged	high	yes	fair	y	es					
	14 se	nior	medium	no	excellent	n	10					
3. a)	We wa Boolea	nt to des	nts. Wh sign a tr m varial	at is Vo oublest ble repr	C(H)? Just nooting ad resenting v	tify your visor for whether	PCs. L	here a and b may be r with example. Let CF be a reputer fails or not.	4	3	3	1,
	Malfun variabl	e there a action-of es EF ar EF) = 0.1	f-computed MC,	iter, rep respect	resented uively.	f failure using the	: Electri : Boolea	icity-failure and an random				
					, CF ~EF,	MC) - () 5					
					CF ~EF, (CF EF,							
								ility table) for this				

Code No.: 14247

14. a)	Explain the case-based	d reasoning (C	CBR) with	an example.		4	1	4	1,2
b)	Consider the Height a the weight of the 11th			A	1	4	3	4	1,2
	ID	Height	Age	Weight					
	1	5	45	77					
	2	5.11	26	47					
	3	5.6	30	55					
	4	5.9	34	59					
	5	4.8	40	72					
	6	5.8	36	60					
	7	5.3	19	40					
	8	5.8	28	60					
	9	5.5	23	45					
	10	5.6	32	58					
	11	5.5	38	?					
15. a)	Explain the Convoluti	on Neural Ne	twork with	a diagram.		4	2	5	1,2
b)	Describe the application problem.	on of genetic	program to	solve stacking	the blocks	4	3	5	1,2
16. a)	Explain the issues nee	d to be addre	ssed in ma	chine learning.		4	2	1	1,2
b)	What is Perceptron? perceptron learning al	Derive the o	equation f	or weight upd	atation in the	4	1	2	1,2
17.	Answer any two of the	following:							
a)	Explain how Mistake i. Find-S algorith		puted in			4	2	3	1,2
	ii. Weighted Maj	ority algorith	m						
b)	Describe the Radial Basis Function (RBF) network with diagram.					4	2	4	1,2
c)	Explain Genetic algor	ithm with an	example.			4	2	5	1,2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	38%
iii)	Blooms Taxonomy Level – 3 & 4	42%
